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Multiple Grid Methods for the Solution of 
Fredholm Integral Equations of the Second Kind 

By P. W. Hemker and H. Schippers 

Abstract. In this paper multiple grid methods are applied for the fast solution of the large 
nonsparse systems of equations that arise from the discretization of Fredholm integral 
equations of the second kind. Various multiple grid schemes, both with Nystrom and with 
direct interpolation, are considered. For these iterative methods, the rates of convergence are 
derived using the collectively compact operator theory by Anselone and Atkinson. Estimates 
for the asymptotic computational complexity are given, which show that the multiple grid 
schemes result in e (N2) arithmetic operations. 

1. Introduction. Multiple grid methods have been advocated by Brandt [5], [6] for 
solving sparse systems of equations that arise from discretization of partial dif- 
ferential equations. Convergence and computational complexity of such multiple 
grid techniques have been studied since by Hackbusch [7], [8] and Wesseling [12], 
[13]. We intend to show that multiple grid methods can also be used advanta- 
geously for the nonsparse systems that occur in numerical methods for integral 
equations. 

In a recent paper [10], the second author applied the multiple grid technique to 
the solution of Fredholm integral equations of the second kind 

(1.1) f(x)I- k(x,y)f(y) dy = g(x), x e[O, 1], 

where g belongs to a Banach space X. At the same time, Hackbusch [7] also used a 
multiple grid technique for these problems. Moreover, he gave a proof of conver- 
gence. In this proof he assumed the operator K, associated with the kernel k(x, y), 
to map from X into a "smooth" subspace X c X, which has a stronger topology. 
In the present paper, for Hackbusch's method we give another proof, which fits 
into the theoretical framework developed by Anselone [1] and Atkinson [2], [3] for 
Fredholm equations. We assume that K is compact from X into X. In contrast to 
Hackbusch's analysis, this approach enables us to consider also Nystrom interpola- 
tion as a permissible interpolation method. In addition, we introduce a new 
multiple grid method for Fredholm integral equations, which can deal with a larger 
class of problems than the method proposed by Hackbusch. 

In 1978 Stetter [11] introduced the Defect Correction Principle for the formula- 
tion of various iterative methods. We shall apply this principle because it also 
appears to be an expedient tool to formulate multiple grid techniques. 
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In Section 2 we collect some results from papers by Atkinson [2], [3] and Prenter 
[9]. In Section 3 we cast the iterative schemes of Brakhage [4] and Atkinson [2], [3] 
into the context of the Defect Correction Principle and multiple grid iteration. 
Furthermore, we give the proof of convergence of the multiple grid schemes with 
Nystrom interpolation. In Section 4 we treat other interpolation methods and we 
extend the iterative schemes of Section 3 for subspaces Xp of X of finite dimension 

Np. These schemes are used as a basis for the construction of a general algorithm 
for the solution of Fredholm equations of the second kind. This algorithm is more 
efficient than the algorithms by Brakhage [4] and Atkinson [2], [3] because these 
schemes take C (Nl,3) and e (N log Np) operations, respectively, whereas the multi- 
ple grid schemes result in C (NX2) operations. In Section 5 we illustrate the 
theoretical results of the previous sections by some numerical examples and we 
comment on the computational complexity. 

2. Basic Assumptions. Equation (1.1) can be written symbolically as 

(2.1) Af= g, g E X, 

where X is a Banach space and A = I - K, with I the identity operator on X and 
K the linear operator associated with the kernel k(x, y). A is assumed to have a 
bounded inverse on X. We shall discuss the convergence of a sequence of 
approximations to the unique solution of (2.1). 

Let Xp, p = O, 1, 2, ... , be finite-dimensional subspaces of X and let Tp, 
p = 0, 1, 2,..., be a bounded projection operator from X onto Xp, i.e. TJf = f for 
allf E Xp. We need the following assumptions for {Xp) and { Tp} 

(Al)XO c X1 c * * c Xp c - * c X, 
(A2) limp- IIf - T,fjI = 0 for allf E X. 

LEMMA 2. 1. 
C1 = sup 11 Tp7, < oo. 

p>O 

Proof. The lemma follows from the principle of uniform boundedness; see 
Atkinson [3, p. 18]. [1 

The sequence {Xp} is thought to be associated with a sequence of decreasing 
meshsizes {hp) with limp-, hp = 0. Corresponding with this sequence {hp}, we 
approximate K by a sequence of operators (1Kp, Kp: X -* X. Analogous to 
A = I - K, we also write Ap = I - KI. In the context of multiple grid iteration, 
the subscriptp is called "level". 

We use the following assumptions on Kp, p = 0, 1, 2, ... . 

(A3) Kp is a linear operator X -* X. 
(A4) { KpA} is a collectively compact family of operators. 
(A5) limp 11 Kpf - KfJJ = 0 for allf E X. 
(A6) Kp = Kp Tp. 

LEMMA 2.2. From the assumptions (A3)-(A5)follow: 
(i) K should be compact. 
(ii) The sequence {I(K} is uniformly bounded, i.e. 

C2 = SUP I KPII <OO. 
p>o 



SOLUTION OF FREDHOLM INTEGRAL EQUATIONS 217 

(iii) limp-- II (K - Kp)MI = Ofor any compact operator M: X -* X. 

(iv) Let 

ap= sup sup II(K - Kq)KIII. 
q>p 1>0 

Then limp, ap = 0. 

Proof. See Atkinson [3, pp. 96 and 138]. LI 

LEMMA 2.3. Let the finite-dimensional subspace XO c X be sufficiently large (i.e. 
the meshwidth of the coarsest discretization is sufficiently small). From the existence 
of a bounded inverse of A = I - K and the assumptions (A3)-(A5) follow: 

(i) (I- Kp)- exists on X for p > O and 

C3 = SUP j|(I-K)|1| < ox. 
P>~O 

(ii) I/f - fp11 C3JJKf - K7jI, where f is the solution of (2.1) andfp of 

(2.2) (I - Kp)fp = g. 

Proof. See Atkinson [2, p. 18]. [L 
The following lemma is a summary of results given by Prenter [9]. 

LEMMA 2.4. From the assumptions (A2)-(A6) follow: 
(i) For any compact operator M on X into X, 

lim II(' - Tp)M|| = 0. 

(ii) If XO is sufficiently large, then (I - TpKp)- exists on X for p > 0 and 

C4 = SUp JJ(' - TpKP)Y1JJ < a)* 
p>O 

Letfp be a solution of 

(2.3) (I - TpKp)jp = Tpg. 

According to Lemma 2.4(ii), fp exists and is unique; it follows from (2.3) that 
fp EXp. 

LEMMA 2.5. Let 

b = sup sup II(I- Tq)KIII. 
q>p 1>0 

Then limpO,> bp =0. 

Proof. Let I = {IC,f I p > 0 and IIf I I 1) . By assumption (A4), I has compact 
closure in the Banach space X. Then 

bp = sup sup II(' - Tq)zII 
q>p zeI 

and the proof follows by assumption (A2). C1 

LEMMA 2.6. Let the subspace Xo c X be sufficiently large. Then 

||fp- Tp4 -<- CIC4IIKf - KAI, 
where f is the solution of (2.1). 
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Proof. See Prenter [9, Theorem 6.31. L1 
As a consequence of assumption (Al), the following lemma is trivial. 

LEMMA 2.7. Let q < p, i.e. dim(Xq) < dim(Xp). Then 

Tp Tq = Tq Tp = Tq* 

3. Iteration Schemes With Nystrom Interpolation. In this section we use the 
Defect Correction Principle (cf. Stetter [11]) to formulate a class of iterative 
methods for the solution of (2.2). This equation is written as 

(3.1) A1fP=g, geX, 

with Ap = I - Ap. The defect correction principle defines the following iterative 
process: 

(3.2) 1' f~~~J,0 = 0, 
(3.2) (fp,i+I = B g + (I - BPAP)fp,. 

Here Bp denotes some approximate inverse of Ap, which is bijective and continuous 
in X. The solution fp of (3.1) is a fixed point of (3.2), and (3.2) will converge to fp if 
the rate of convergence III - BPAPII < 1. 

Several well-known iterative schemes for solving Fredholm integral equations of 
the second kind can be formulated within this framework. The iterative scheme of 
Brakhage [4] is obtained by taking the following approximate inverse 

(3.3) BP1) = I + (I -Kp-) IKp. 

Here we notice that the operator (I - Kq)- 1, q > 0, as a mapping on X into X 
describes the process of discretization, solution of the discrete problem (i.e. the 
solution of a square linear system), and subsequent Nystrom interpolation; see e.g. 
[10]. Other kinds of interpolation are treated in the next section. 

The second iterative scheme of Atkinson [2, p. 19], arises from 

(3.4) BP ) = I + (I - K,) _'Ip. 

The rates of convergence of the corresponding iterative processes are estimated in 
the following theorem. 

THEOREM 3.1. (i) I I- B 1()API 0 asp oo, 
(ii) III - B(2)Ap 1 C(X0) as p oo, C(X0) < 1 for XO sufficiently large. 

Proof. (i) Substitution of the explicit expressions for Ap and B(') yields 

I - Bp()AP = I -{I + (I -Kp-,) lKp)(I- KP) 

= Kp -(I-Kp - l) l'KP(I - KP) = (I-Kp _ K(Kp- )Kp. 

From Lemmas 2.2 and 2.3, we get the following bound for the norm 

|-(I-Kp-1) 1(KP-KP_1)KP|| < C3(ap + ap-1). 

(ii) Analogously, we get, for BJ(2) with X0 sufficiently large, 

1I1 - Bp(2)APIj < C3(ap + ao) C(X0). 

From Lemma 2.2 it follows that C(X0) < 1 for all sufficiently large X0. O 
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We remark that the approximate inverses B(l) and B(2) use only two levels: BM 
uses the levels p - 1 and p, whereas B(2) uses the levels 0 andp. We now introduce 
approximate inverses Bp(3) and Bp(4), which use p + 1 levels. They are defined 
recursively as follows: 

35B ) = (I -KO) 

lB(3) = I + Q(3) Kp p = 1 2, . . . . 

and 

B = (I -K) 9 
(3.6) 

IS)(-? 

(Bp4) = Qp)(I -K1 + Kp), p 1, 2,... 

with QJ),j = 3, 4,p = 0, 1, 2, . . ., given by 
Y-I 

Q(J) = , (I -BfU)A )mB(u) 
m=O 

for some positive integer -y. 
From the fact that QO$J) satisfies the equality 

(I - Q)Ap) = (I-Bp(')A ly 

we see that (j) is an approximate inverse of Ap and its application is equivalent 
with the application of -y iteration steps of (3.2) with the use of the approximate 
inverse Bp0). In fact, this is the motivation for this definition of Q09 and it is the 
basis for the actual (recursive) implementation of the method. 

In the following definition we give a short notation for the rates of convergence 
for the various iterative processes. 

Definition. 

U) =I - BPU'()AP|j j = 1, 2, 3, 4. 

THEOREM 3.2. (i) g;(3) < (1) + D2(3)1) + IK 11 )K 
(i)4) < (1) + t (4) t? (1) + 1 

Proof. (i) By definition 

I - B')A =I-{ I + A-11 (I-Ap)} Ap p p p p-p 

and 

I -B3) = I - I + [I - (I -B3) AP_ l) ]Ap 
- (I - AP) }AP 

- I-Bpl)Ap + (I - Bp3)1AP_1) YA -(I -Ap)Ap 

- I-B(')Ap + (I - B-3) JAP (1)_I)Ap. 

Hence, 

I - Bp3)Ap | Sl I - Bp(')Ap 1I + 1 I-Bp3) I Ap _I||{I - Bp(')ApJ, + 11 I - Ap}, 
i.e. 
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(ii) Similar to the case (i), now we have 

I-B-(4)A = -[I - (I- Bp4) -A,-) AP+ I)AP 

= I-B()Ap + (I -Bp4)IAP )Bpl)Ap. 

Hence, 

I - BP4)AII < || -Bp(1)Apll + 11- - B 1||A || 1B7AJ-AP 
i.e. 

;4) < t(1) + 4) ( + 1). 0IE 
By Theorem 3.1 we know that P(-->0 as p -> x; conditions for tp(3) to vanish 

depend on -y, I I I, and Dp(1), whereas the conditions for P4) depend on y and 
only. In order to study this dependence further, we prove the following lemma. 

LEMMA3.3.Letk E Randy E N be given, let {vp Ivp > O,p = 0, 1,2,... bea 
nonincreasing sequence with d = infp vp / vp 1 and let { wp} be defined by 

wo = Vo, 

wp=vp+ wpALI(vp + k). 

If either 
f> 1, 0 < k < d < 1, and 

(i) VO < '(1 -kd) 
or 

ty > 2, and 

(ii) l v0 <4{ < 1 + (k/d)2 -kld 

then a C > 0 exists such that vp < wp < Cvp. 

Proof. (i) We define c = (d + k)/(d - k). Then c > 1 and the conditions on 

{vp) are written as 

(3.7) k c+ < p < 
C-i1 - 

and 

(3.8) (1 + c)vO K 1. 

We show that the lemma is true for C = 1 + c. From (3.8) we see wo = vo < 
(1 + c)vO < 1. Now we show by induction that wp < (1 + c)vp < 1 assuming that 

Wp-l <(1 + c)vP_ K 1. 
From (3.7) follows 

- k <c 
- 

c+1 Vp Ik < c+1 

(1 + Cy 
-I I 

I(p-l + k) < 
c + 1 cJVP1.~\VP1 

VPi 
c 

wp_L (vp + k) < (1 + c) vPL I(vp + k) < cvp, 
wp = Vp + wp_L (vp + k) < (1 + c)vp. 
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(ii) We assume vo < (k/2d)2 + c/ (1 + C)2 _k/2d for some 0 < c < 1 and 
we show wp < (1 + c)vp. Then the lemma is proven by taking c = 1. 

For any v E [0, vo], we have 

V2Z + kv _ C < 
d (l+C)2 

Hence, (1 + c)v(v + k/d) < c/(1 + c). By assumption, we know 

Wo=Vo <(I +c)vO< kI( 1 C) 
2+c 

k( +c) < V< . 2d J - 2d 

Now we show by induction that wp < (1 + c)vp < 1, assuming that wp_ < 
(1 + C)KVp < 1, 

(I + C) P-(V - VP d Ik<1+ c' 

(1+ )VP-1 VP-,+ V c +c' 

(1 + C)2 2 +- < C, 

(1 + C)2V;1(1 + 
k 

< C, y = 2,3 . 

WpL- 1 
k 
- < C, 

wp = vp + wpALI(vp + k) < (1 + c)vp. Q.E.D. 

THEOREM 3.4. Let y > 2 and let g1(1) satisfy 

p1 ) S vp = dPvo for some O < d < 1. 

Then, 

(i) if vo S {Vd2 + C2 -(C2}/2d, it follows that p3) < 2dPvo, and 
(ii) if vo < { + d - 1) /{2d, it follows that p<4) 2dPvo. 

Proof. (i) Let {wp} be defined as in Lemma 3.3 with k = C2 = supp>0 IIKPII. 
Then it follows from the proof of Lemma 3.3 that wp < 2vp. Therefore we show 

3) < wp by induction: from the definition of tp(3) we derive 

g(3) - ) < = wo 

and, by Theorem 3.2, 

t(3) S t(1) + 3) (1) + IIK) SV + W1(v + C2) =WP 

(ii) Similarly, with {wp} defined as in Lemma 3.3 with k = 1, we prove p(4) <Wp 

and, hence, 

gp4) < wp < 2vp = 2dPvo. Q.E.D. 
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Remark. If Bp(3) is defined with y = 1, then a similar proof yields that, for any 
decreasing sequence { vp } with 

sup K 11 = C2 < d = inf < 1, 
p;O PVP-1I 

for which 1) v vp, we have tp(3) < (2d/(d - C2))vp. aI 
By fj(J) we denote the result of a applications of the Defect Correction Process on 

level p with approximate inverse Bp('), j = 1, 3, 4, when we take zero as the initial 
approximant. 

With the aid of the previous theorem and Lemma 2.3, now the following theorem 
is immediate. 

THEOREM 3.5 [APPROXIMATION THEOREM]. Under the hypotheses of Theorem 3.4, 
the Multi Grid process yields approximate solutions for which the following error 
estimates hold 

Ilf- 1 < C3 A, - KAl + (2dPvo)0IIfP|I, j = 3, 4, 

where f and fp are the solutions of (2.1) and (2.2) respectively. 

Proof. The proof follows immediately from 

lif - rP"64l < lif - fPll + llfP - tp,)64 F- 

4. Iteration Schemes With Projection into Finite-Dimensional Subspaces. In this 
section we expand the technique used in Section 3 to find the solution in Xp of the 
equation (2.3): 

(4.1) A fp = gp, gp E Xp, 

where AP = I- TpKp is a mapping on X into X. We assume that XO is sufficiently 
large such that (I - TpKp)- 1 exists for allp > 0. 

Analogous to the approximate inverses of Ap in the previous section, we now 
introduce 

fil) = Tp + Tp_1(I- Tp-_Kp-,) lTpKp, 

Bp2) = T + To(I- ToKO) lTp Kp, 

tS3) = TO(I- TOKO) - 

lP)=TP + TP_ 1QP3) 1TPKP, 
t BO4) = TO(I- TOKO)-1 

T- TP + TP I - T IKP1 + TPKP) 

with 
y - 1 

Q(J) = P - ByV)AP)mfiy) j = 3, 4, 
m=O 

for some positive integer y. 
The operators ), j= 1, 2, 3, 4, are all mappings on X into Xp. The solution 

fp E Xp of (4.1) is approximated by a defect correction process of the form 
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(4.2) =~ +( 

(4.2)~ ~ ~~~ P fp+ I "_ BP gp +( Bp Ap)fp,j 
We notice that h(l) and Bh.3) yield iterative processes that are equivalent, respec- 
tively, with the "One Step Method" and the "Multi Grid Method" discussed in 
Hackbusch [7]. BP'2) yields an iterative process analogous to Atkinson's method, 
whereas BP'4) yields a new multiple grid method with better convergence properties 
than A(3) 

p. 

Analogously to Section 3, but restricting the domain of the operators to Xp, we 
see that here Qp(): Xp, Xp is an approximate inverse of Ap: Xp -> Xp, and the 
amplification operator on Xp into Xp of a defect correction step with QpI(J is 

- QA= (i Bp- p'A 

Thus, one application of Qp(J)is equivalent to the y times application of k and 
we may write 

Qy) = T - (Tp- pU)j ]Ap 

The convergence of the process (4.2) depends on the Lipschitz constant of the 
operator I-BpAp as a mapping Xp --> Xp. Therefore its rate of convergence is 
given by 11 Tp(I - BpAp)II. This rate of convergence is studied in the remainder of 
this section. 

THEOREM 4.1. (i) II Tp(I -BP' AP)II 0 as p oo, 
(ii) I Tp(I -_ (2)II < C(X0) as p x-* , C(X0) < 1 for XO sufficiently large. 

Proof. (i) Substitution of the explicit expressions for Bp1) and Ap yields 

Tp- = (PTp-T )Kp 

+ Tp_I (- Tpl1-1)7Tp(Kp - Tp_I K)AP. 

Therefore, we have 

|| M T (-fi(1)AP )|| < 11(I'- Tp)Kp|| + 11 (I'-Tp_ 1)ll 

+ || Tp- I 1 |(I - Tp- IKp- ) I11| Tp| 

* S| - K)KII + II(K- Ai)KpI| 

+11(KP1 1- TP-,I 1KPII}. 
Using Lemmas 2.1 to 2.5 we obtain the proof of (i) by the same arguments as used 
for the proof of Theorem 3.1. 

(ii) Replacing the subscript p - 1 by 0 in the first part of the proof, we get 

1TP(I - B2))II ? 11('- 7)Kj,j +1(1'- T0)K,II + ItoII II(' - T 0K0)YII TII 
{ II(KP - K)KAII + I|(K 

- K0)KjII + I1(I - To)Kol II KPII}. 
Forp -oo 11(I - Tp)K,II and II(KI - K)K II vanish, whereas the other terms tend 
to a constant value depending on X0. O 

Definition. 

41p(') =II | ( - I p(})Jp)II, j = 1, 2, 3, 4. 
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THEOREM 4.2. 

7(3) < 7B(l) + (R3)Y 1 [7P) + 11 TPll 11 KPI] 

71p(4) < %B(I) + 7qP4)Y1 [ 7R1) + || TPI 

Proof. We use the notation M,(J) = T (I - BpAp), j = 1, 3, 4. From assumption 
(A6) and the definitions of Ap, Ap, and Bp('), j = 1, 3, 4, it is clear that 

TpAp P TpA4p = A-pTp 

and 

p= TPB() = P P)Tp, j = 1, 3, 4. 

Hence, 

Mp(= P = MJTP, j =1, 3, 4, 

and also 

QPw) =[Tp - Mp) ]Ap-. 

(i) From the definition of Bp(l), we get 

MP() = Tp- TpAp - Tp 1A--11 TpKpA = TpKp- Tp- -- 1 TpKpAp. 

These relations are used to prove that 

3) T[ T {7- + TK 

-T-TA Mp) 
-M(3_1 Tp(T -)M(3). 

- + ~~ 
- p ITM 

3"j -1 
= 

+p - p 

Hence, 
rq(3) S qp(l1) + -qp3)Y q(pl ) + Tp 1Kp ) 

(ii) 

Mp= Tp - TpAp + Tp _ ApP -Tp - + Tp K4ip 

M M) + Mp(4)AP- i(APiT_ + 
TIKI)Aw 

= ) + Mp(4)i1>Tp_ Tp(Ap + Ap-Y? TpKp) 
M-I)+ M -) 

=MpI) + Mp(4)" (T 
_-M(I)). 

Hence, 

q(4) % 0) + Y(4)((1) + '|II). Q.E.D. 

THEOREM 4.3. Let y > 2 and let 7q1) satisfy 

71qp) < vp = dPvo for some O < d < 1. 

Then, 

(i) if vo ? {Vd2 + C2C2 -C1C2}/2d, it follows that <p3) ? 2vodP, and 

(ii) if v0 ? { d2 + C2 - C1}/2d, it follows thatP < 2vOdP. 
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Proof. (i) Use Lemma 3.3 with k = C1 C2 and Theorem 4.2. 
(ii) Analogously with k = C1. D1 
By ff" we denote the result of a applications of the Defect Correction Process on 

level p with approximate inverse BP' , j = 1, 3, 4, when we take zero as the initial 
approximate. 

THEOREM 4.4 [APPROXIMATION THEOREM]. Under the hypotheses of Theorem 4.3 
the Multi Grid process yields f(), for which the following error estimates hold 

IVf- iip < Ilf - TAI + C1C4I IKf - KAI + (2dPvo)GVfpV, 

where f and fp are the solutions of (2.1) and (2.3) respectively. 

Proof. Forj = 1, 3, 4 we have 

IV - po|| <IIf Tli AI + || TV-f| + ||f0 -lI o|| 
and the proof follows from Lemma 2.6 and Theorem 4.3. [1 

We notice that the usual discretization methods easily satisfy the first condition 
of Theorem 4.3 as is illustrated in Section 5. The other condition of Theorem 4.3, 
which requires an upper bound on vo, essentially is a requirement on the coarsest 
discretization used in the multiple grid algorithm. This condition is also discussed 
in the next section. 

5. Numerical Results. In this section we illustrate the theoretical convergence 
results from the previous sections, and we make some remarks about the computa- 
tional complexity of the various methods. We shall only show numerical results 
obtained with the methods that appear to be the most efficient. These methods are 
defined by the approximate inverses BJ(2) (Atkinson's method), B_(3) (Hackbusch's 
method) and Bp4) (a new method with better convergence properties). 

As an example, the integral equation 

(5.1) f(x) - XfI cos(?rxy)f(y) = g(x) 

is solved for various values of the parameter X (cf. Hackbusch [7] who gives results 
for the same equation); g(x) is chosen such thatf(x) = ex cos(7x). 

The operators IKY are defined by means of the repeated trapezoidal rule: 

Np 

K,f(x) = E wjk(x, xj)f(xj), 
j=O 

where the nodal points {xj} are uniformly distributed (xo = 0, XN = 1) and the 
weights {wj} are given by {4hp, hp, hp, . .. , hp, 'hp} with hp = (Np)-l. The projec- 
tion operators are defined by piecewise linear interpolation at the nodal points 
{xj}. The different grid-levels are related by Np = 2Np_ 1. 

For the operators { Kp } and { Tp) we know (cf. Atkinson [3] and Prenter [9]) 

(5.2) IIKpf -Kll = (h2 

(5.3) TV-fll = ? (h 2) 

(5.4) aP = ?(h 2), and 

(5.5) bp = ?(h 2) forP -oo. 
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Using these estimates, we easily derive (see the proof of Theorem 4.1) 

(1) < V = Ch2 1 

Because the successive meshsizes are related by hp = h-P, we have 

(5.6) 7() v = 4Ch24-P. 

Comparing this expression with the assumption on (I) in Theorem 4.3, we see that 
d= 1/4. In the same theorem, conditions on -q) are formulated for the multiple 
grid methods to converge. Comparing these conditions, we conclude that the 
condition on -q(l) in the process defined by Bp4) is independent of C2= 

supp,>0 j IKPIj, whereas in the process defined by i the condition on ) becomes 
stronger as supp>0 IIIpjj increases. In Figure 1 we sketch the regions of conver- 
gence induced by Bp(3) and B as derived from Theorem 4.3 with d= 1/4 and 
y =2. 

o. 

Io0 n(3) T?l1t 
'0 ~~~, 

0 
Pl 

16C1 1 (C_ 

0 1 s.w; BK II 0 1 slip B 1! 
p? P 1:'1)>O P 

FIGURE 1 

The multiple grid convergence regions. The coarsest 

grid convergence factor qo versus C2 = supp o 11 II 

Hence, from Theorem 4.3 one may expect that both multiple grid methods yield 
similar results as fjKI jj 1, whereas they differ for jjKjj >> 1. For the integral 
equation (5.1), IlK II >> I holds for A >> 1. 

In Tables 5.1-5.3 we give the observed rates of convergence 

X(N6; No) = [I ||I 
'. 

1-P,g / liP, I/.l] 

for the iterative methods defined by B B3) and Bp(4), respectively, with y = 2. 
The dependence of q(Np; No) on Np, the number of mesh intervals in the finest 
grid, and on No, the number in the coarsest grid, is shown. The value of i is suitably 
chosen and 11 j 11 denotes the maximum norm. From Table 5.1 we see that the rates 
of convergence of Atkinson's method tend to a constant value as Np -* oo. As was 
expected, it decreases as No increases. 

In the case of convergence, the Tables 5.2 and 5.3 asymptotically show similar 
results. However, for larger values of A, the new multiple grid method needs fewer 
subintervals in the coarsest grid. The quotients iq(Np; No)/1(A(NPT; No) approxi- 
mate the value d = 1/4, which is in agreement with the theory. 
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TABLE 5.1 

Rates of convergence for the two-grid method defined 

by B(2) (Atkinson's method). 

N0lXol ~ 1 

X N 2 4 8 16 32 64 

4 _2310 
1 8 .28 10 .58 10 

1 -2 -2 
1 i 16 .3010 .72 10- .15 102 

32 .30 10 .76 102 .18 io2 .38 10 
3 

-1 -~~2 -2 -3 --4 
64 .30 10 .78 10 .19 10 .47 10 .83 10 

128 .30 10 .78 10-2 .19 1o-2 .52 10-3 .10 10-3 .24 IO-4 

4 .11 J0+1 

8 .16 10+1 .18 10 

10 16 .17 10+1 .22 10 .36 10-1 

32 .17 10 ' 1 .23 -O .45 10 1 86 10-2 

64 .17 10+1 .24 10 .48 10-1 .11 10-1 .21 10-2 
+ 1 0 -1- 2 -3 

128 17 10 .24 10 .48 10 .11 10 .27 10 .38 10 

4 .64 10+ 

8 .1 1 10K2 .14 10+1 

100 16 .14 1 02 .16 10t .40 10? 

32 .15 10+2 .16 10-Fl .42 10 .99 10- 
+1 0 0 - 

64 .15 102 .16 10 .45 10 .15 10 .33 10 

128 .15 10+2 .16 10+1 .49 10 .16 10 .41 10-1 .68 10-2 

Using (5.2), (5.3), and (5.6) for the approximation errors, we conclude, from 
Theorem 4.4, that for the multiple grid methods a = 2 iteration steps are sufficient 
to get an iteration error which is of the same order of magnitude as the approxima- 
tion errors If - Tpf II and IIKf - KpfI. Of course, this is not the case with 
Atkinson's method for which one has to perform ? (log Np) iteration steps. That 
these asymptotic arguments hold already for relatively small Np is shown in the 
Tables 5.4-5.5, where we compare the approximation errors with the iteration error 
after a = 2 iteration steps. 

We conclude this section with some remarks about the asymptotic computational 
complexity. We only count multiplications, ignoring the multiplications with the 
weights wj and the computations involved in the evaluation of k(s, t). Then, 
asymptotically for Np -s o, the operation counts per iteration sweep for the various 
approximate inverses are: 

B(') 2.75N2 BP: 1.75Np2 p p 

Bp2): 2N 2 Bp2): i N 2 
p p' p 

B :3) 2N 22log Np, Bp3): 3Np2, 

B(4) 2.5N2 2log Np, Bp4): 3.5Np2 
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TABLE 5.2 

Rates of convergence for the multiple grid method 

defined by B(3) (Hackbusch's method). 

N~~~~~~~ 

X N 2 4 8 16 32 64 

4 .31 10 1 

8 .98 10- 9 10- 
- 2 2 -2 

1 16 .24 10 .24 10 .23 10_ 
- 3 -3 -3 -3 

32 .62 10 .62 10 .62 10 .62 10 
- 3 -3 -33 64 . 14 10 .14 10 . 14 ] 0 . 14 0 . 14 10 

44 -4 -4 -44 
128 .35 10 .35 10 .35 10 .35 10 .34 10 .35 10 

4 .32 100 

8 .1210 l .10 10? 

10 1 6 . 42 10 1 .12 10 .25 10 1 

32 .20 10 .18 10 .13 10 .62 10 

64 .23 10+6 .91 1o-2 .24 10-2 .23 10- . 19 I o-2 
+12 - 3 - 3 - 3 - 3 - 3 

128 .40 10 46 10 .57 10 .52 10 .53 10 .51 10 

4 4 3 +10 

8 .11 10+4 .11 10+1 
+7 + 2 

IUO 16 .66 10+7 .77 10 .29 10? 

32 .17 1 0 79 10 .51 10 .10 10 
+34 +11 + 3 0 

64 82 100 46 10 .15 10 .33 1 0 .29 101 

+70 -1 23 +7 0 --2 128 .80 10 .86 10 .96 10 .43 10 .24 10 .85 10 

Here we ignored the direct solution on the coarsest grid and we applied the 
multiple grid methods with a = y = 2 on all levels. 

Note. The number of kernel-function evaluations is Np2 in the linear case when 
they are computed once and stored. In the nonlinear case or in the case when 
kernel-functions are reevaluated whenever they are used, the number of kernel- 
function evaluations is of the same order as the number of arithmetic operations. 

Asymptotically, all methods need only 2 iterations to obtain a result of the order 
of the truncation error, except the methods with B(2) and Bp(2) which need e (log Np) 
sweeps. For the methods with B(') and Bp(') the coarsest grid still has Np/2 mesh 
intervals; on this grid the problem is solved by a direct method (e.g. Gauss-elimina- 
tion) and therefore we have to add Np to the total computational complexity. 
Thus, for the total amount of asymptotic computational work we get the following 
table: 

B : 1 N3 + 5.5N2 fll): 1B N3 + 3.5N2 
B(2 12 P P 12 P P 

B2: ~ N+ ((N loN ) k N 3+?(9(Nl Pg), P 3 0 P ~P 3 P p 
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Bf3: 2 +4N 2 Np, Bi : N3 + 6Np p 0 p P~~~3 

B(4) 2 N3+5N2 2log N B(4) 2 3N3 + 7N2 P * 3 0 P g P P 3 P 

TABLE 5.3 

Rates of convergence for the multiple grid method defined by i4). 

N~~~~~~~~~~~~~~~~ 

X N 2 4 8 16 32 64 

4 .31 il0- 

8 95 10-2 .94 
-2 -2 -2 

1 16 .23 10 .23 10 .23 10 
-3 -3 -3 -3 32 .62 10 .62 10 .62 10 .62 10 
-3 -3 -3 -3 -3 64 .14 10 .14 10 .14 10 .14 10 .14 10 

-4 - 4 --44 -4 -4 128 .35 10 .34 10 .34 10 35 10 335 10 335 10 

4 .32 10 

8 .18 1i0 .10 10? 

10 16 .40 10 .12 10 .25 10 
-2 -2 -2 -2 

3 2 .70 10 .69 1 0 .60 10 .62 10 
-2 -2 -2 -2 -2 

64 .19 10 .19 10 .19 10 .19 10 .19 10 
-3 -3 3 -3 -3 -3 128 .50 10 .50 10 .50 10 .50 10 .50 10 .51103 

4 .43 10+1 

8 .72 10+1 .11 10+1 

100 16 .30 10+2 .11 10+ .29 10? 

32 .13 10+4 .13 10-F1 .20 10 .10 10? 

64 .17 10+7 .16 10+ 1 .41 10 l .36 10-I .29 10 1 

?13 +1- "2 - 2 -I -2 

L___ 1128 .29 10 26 10 .75 10 .94 10 1o to .85 10 

From these tables we see that the multiple grid methods become cheaper than 
Atkinson's method, whenever the latter needs more than three iterations. 

In order to get an impression of the qualities of the various methods, we suggest 
to measure by experiments the following ratio (which shows the amount of 
computational work per digit accuracy obtained): 

Number of multiplications to obtain 
Ka Np2 * 10 logjgf- oll 

Because of their rates of convergence, for the multiple grid methods we choose 
a = 2, whereas for Atkinson's method we determine a such that Ki is minimal. 
Better methods are now characterized by a smaller K, 
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TABLE 5.4 

The ratio: iteration error after 2 sweeps/approximation errors, i.e. 

IfP,2 - fp,0o1 /jlf - Jp,0ojj' 

Numbers of subintervals: No = 2, (a divergent iteration process is denoted by-). 

ii N B (2) B3) '(4) 
P P P P 

1 I 4 .0046 .0018 .0018 

8 .0267 .0003 .0003 

16 .1162 .0001 .0001 

32 .4743 .0000 .0000 

64 .0930 .0000 .0000 

128 5.6378 .0000 .0000 

10 4 - 3.3089 3.3089 

8 - - .05GS 

16 - - .3899 

32 - - .0694 

64 - - .0194 

128 - - .0050 

TABLE 5.5 

The ratio: iteration error after 2 sweeps/approximation errors. 

As Table 5.4, but No = 8. 

X N ((3) M(4) 
,P P P P 

1 16 .0003 .0001 .000t 

32 .0017 .0000 .0000 

64 .0075 .0000 .0000 

128 .0306 .0000 .0000 

10 16 .0936 .3202 .3202 

32 .6088 .2000 .0692 

64 2.7111 .0341 .0194 

128 11.1310 .0056 .0050 

100 16 91.0760 34.0160 34.Ot60 

32 563.4392 - 34.7089 

64 2480.5082 - 24.3138 

128 > 1O4 0.1220 
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TABLE 5.6 

For problem (5. 1) with A = 100 and Np = 128 the experimental 

ratios Ki, where a is given between parentheses; 

for this problem '0logljf - fp o4I1 = -3-5- 

N0 8 16 3.2 64 

B 7.55 (11) 3.46 (5) 2.73 (3) 6.20 (2) 
p 

B - -8.42 (2) 2.97 (2) 5.95 (2) 
p 

B4) 2.00 (2) 1.86 (2) 2.20 (2) 6.10 (2) 
p 

Table 5.6 shows, for the multiple grid methods, that small values of No are more 
efficient as long as the process converges. However, within a reasonable range of 
small No, it seems not worthwhile to determine an optimal No. 

The asymptotic work estimates and the convergence property discussed in 
Section 4 lead us to prefer J(3) for IlK II 1 and A;4 for IIKII > 1. Finally, we 
remark that the same multiple grid techniques can be applied to nonlinear prob- 
lems as well. Moreover, the structure of multiple grid algorithms yields estimates 
for the approximation and truncation errors in a natural way. All these features 
together can be used to construct an automatic program for solving Fredholm 
integral equations of the second kind. In fact, such a program has been constructed 
and some of the results have been reported in [10]. 
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